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Abstract-The analysis of clasto-plastic plate bending using a boundary integral equation for
mulation is described. The integral equations are solved using standard boundary element
techniques. The plasticity. as well as the external lateral load. appears in a domain integral. The
solution is obtained by an incremental loading procedure with the initial incremental plastic
moments calculated by an iterative method, Several study cases are examined and good agreement
is shown with published results obtained by the finite element method.
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a load vector
a point
matrices
radius vector
a matrix
plate area
a matrix
tangential unit vector
matrices
fundamental solutions

1213



1214

Vn • V;. V~

II'

{Wi, {W,n}
{WD

}

x•.1', =
{XH

}

{y8}
r
o

O(P. Q)
L\

{e}. Ie}'. {e}P
;,
v
a

{u}
r/J
~v

A. MOSHAIO\ A:-'lJ W. S. VORUS

equivalent shears
deflection
boundary displacement and slope vectors
vector of domain unknowns
coordin<l tc system
vector of boundary unknowns
vector of boundary knowns
plate boundary
increment symbol
delta function
Laplacian operator
total, elastic and plastic strain vectors
proportionality coefficient
Poisson's ratio
yield stress
stress vector
angle
coordinate system

INTRODUCTION

The Green's function, or boundary integral equation method, is well known as a competitive
method of solving linear elastic plate bending problems, Several authors have suggested
different ways of formulating the boundary integrals for plate bending (Massonnet[l],
lawson and Maiti[2], Maiti and Chakrabarty[3], Hansen[4], Altiero and Sikarskie[5]). The
formulation suggested by Bezine, and independently by Stern, has the advantage of being
suitable for solving cases of general boundary conditions while the other methods are
restricted to more special configurations (Bezine[6], Stern[?]). The current work extends
Stern's formulation to include plasticity.

Through the use of the generalized Rayleigh-Green identity, Bezine and Stern have
shown that the boundary integral equations can be obtained in terms of the relevant physical
conditions existing along the boundaries. According to this direct approach, a pair of
integral equations involving displacement, normal slope, bending moment and equivalent
shear on the boundary are defined. Usually two of the above quantities are known for a
given boundary. Generally, the suggested pair of equations is reformulated by means of
boundary discretization. A discretization involving N elements along the boundary creates
a system of equations in 2N unknowns.

Although the boundary element method is naturally suitable for linear problems, it is
also useful for solving elasto-plastic problems of two and three dimensions by means of
initial strain or stress (Banerjee and Butterfield[8]). Usually when using these methods an
incremental approach is applied in which the load is divided into increments. An iterative
method is then used to evaluate the plastic strain existing at each increment. This basic
approach of successive elastic approximations is commonly used in solving elasto-plastic
problems by the finite element method, and has been used with the boundary element
method. A positive feature is that the matrix involved in the solution does not change
during the incrementation and can therefore be inverted in advance and retained.

A boundary element solution for the nonlinear plate bending problem was recently
suggested and demonstrated by Morjaria and Mukherjee[9]. The formulation given there
has the major drawback that only restricted boundary conditions can be used. The current
paper extends the general elastic plate bending formulation of Stern to the elasto-plastic
case (Stern[7]). It is shown that this extension retains the advantage of dealing with the
physical quantities of displacement, normal slope, normal moment and equivalent shear
along the boundary.

Morjaria and Mukherjee used numerical second derivatives of the nonlinear strains in
their formulation. In this paper, the problem is formulated such that no derivatives of the
plastic strains are needed.

Three study cases are described and a comparison with published results obtained by
the finite element method are presented (Popov el a/.[IO, 11], Owen and Figueiras[I2]).
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GOVERNING EQUATION

Following Kirchoff's assumptions based on the small deflections theory of thin plates,
the biharmonic equation for the elastic plate bending can be reformulated in incremental
form to include the plastic strain increments. It is assumed that any in-plane effects are
neglected and that the midplane of the plate is a plane of symmetry even in the presence of
plastic strains.

The increment of the total strain can be written as a superposition of increments of
the elastic strain and the plastic strain as follows:

(1)

For the elastic component under plane stress:

(2)

According to the kinematic assumptions the increments of the total strain are given in
terms of the partial derivatives of the deflection increment as follows:

~eyy = - z~w,yy'

&oXy = - z~w.Xy.

(3)

Following the derivation procedure of the elastic plate bending equation, the incremen
tal form of the equilibrium equation gives

where the increments of the moments are defined as

~Mx = fa ~(1xxz dz,

~My = fa ~(1yyZ dz,

~Mxy = fa ~(1XYZ dz.

Using eqns (1) and (2) the stresses can be expressed as follows:

E E
~(1yy = -1-2 (~eyy+v~exx)--1-2 (~e~y+v~e~x),

-v -v

(4)

(5)

(6)
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Substituting eqn (6) into eqn (5), the increments of the plastic moments become defined as

f" E
!JM~ = -1_ ,2 (e5c~x + ve5c~y)z dz,

- II ~

fa E
!JM~ = ----, (c5c~, +vc5c':Jz dz.

" I-v"

!JM~y = fa 2Ge5c':yZ dz.
-"

(7)

Substituting the plastic and elastic moment increments into the equilibrium eqn (4) and
using eqns (3), (5), (6) and (7), the governing equation for the elasto-plastic plate bending
in an incremental form is obtained:

DI1.6.e5w = e5p- VV!J[MY,

where 11. is thc Laplacian operator and V is defined as

also

(8)

(9)

(10)

The plate bending equation as obtained in eqn (8) includes lateral loading and plastic
effects. The plastic moment tensor, which must be unknown at any increment, simply
appears in the equation as an additional effective lateral load.

Next, following a short description of the constitutive relations, the governing equation,
(8), is transformed into a boundary integral form, with special treatment required for the
plasticity terms.

CONSTITUTIVE RELATIONS

The elasto-plastic analysis requires appropriate constitutive relations. The Prandtl
Reuss stress strain relations based on Von Mises' yield condition is used. The formulation
given by Zienkiewicz et al.[13] is adopted.

A general yield surface F. is given in terms of the stress space and a hardening par
ameter k,

F({q},k) = o.

Using the normality principle, require:

of
e5{c}P = ;. o{q} .

(11 )

(12)

Rewriting eqn (2) in matrix form using [D)' as the elasticity matrix and combining the
increments of the elastic and the plastic strain results in the increment of the total strain as
follows:

(13)



Elasto-plastic plate bending analysis by a boundary element method

Plasticity occurs on the yield surface F of the stress space. This requires:

Using eqns (13) and (14), the following stress-strain relationship is obtained,

b{q} = [D)'Pb{e},

where

{
OF} { of }T ( { of }T { of })- I

[D)'P = [D)'-[D)' o{q} o{q} [D)r H'+ o{q} [D)' o{q} .
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(14)

(15)

(16)

It can be shown that H', in eqn (16), is the slope of the uniaxial stress u = u(k) versus the
uniaxial plastic strain as obtained in a uniaxial yield test. The Von Mises' yield surface for
the plane stress case is given as

Equations (1), (2) and (15) are used to arrive at the equation

b{e}P = [D)*b{e},

where

{
OF} { of }T ( { of }T { of })- I

[D)* = o{q} o{u} [D)' H' + o{u} [D)' o{u}

(17)

(18)

(19)

Equation (18) is needed for the iterative procedure. It relates the increments of the plastic
strain to the increments of the total strain. The plastic strains are required in eqn (7), and
subsequently in the integral equation solution for w(x, y) as presented in the following
sections.

THE BOUNDARY INTEGRALS

The generalized Rayleigh-Green identity has been used in the past to obtain boundary
integral equations for the biharmonic equation governing elastic plate bending (Bezine[6),
Stern[7]). The identity can be written in incremental form as follows:

if(v~.Mw-bw~~v) dS = -D- 'L{vbV~(bw)-:-bwVn(v)} ds

-D- 'i {:n (bw)Mn(v)- :: bM~(bW)} ds (20)

L

+D- I L {[bwMn,(V»)A.. - [vbM~,(bw»)AJ.
moo)

The above relation holds for all functions v and bw which are four times continuously
differentiable. Let S be the domain occupied by the plate and r be its boundary. Also let s
be the arc length along the boundary, ii the outward unit normal vector and l the unit
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vector in the tangential direction of the boundary (see Fig. I for notation). On the boundary
r define M n, M nr and Vn as the actual distributions of bending moment, twisting moment
and equivalent transverse shear force, respectively. The corresponding components M~,

M~, and V~ are defined as functions of the deflection field Ow as obtained in an elastic case.
In other words, the above functions can be obtained from eqns (3), (2) and (5) when the
total strain is taken equal to the elastic strain. Also Mn(v), Mn,(v) and Vn(v) are defined as
in the elastic case corresponding to a deflection field v. The last summation term in the
above equation is a result of possible discontinuities in L corners. The jump at a corner Am
is defined by

Consider two points P(xp, yp) and Q(xQ' YQ) of the region S and let

1
v(P,Q) = 8n,210g"

where

The Green's function v is a fundamental solution such that

!1!1v(P, Q) = o(P, Q).

(21)

(22)

(23)

(24)

Substitute the governing eqn (8) and the above eqn (24), into eqn (20), and get for any
internal point P,

Ow(P) = D- I L{VO V~(ow) - ~~ oM~(ow)+ :n (ow)Mn(v)- OWV.(V)} dSQ

+D- 1 ffV{OP-VVO[M)P} dSQ-D- 1 ±{[owM.,(v»)A.. -[voM~,(c5w)kJ (25)Js m-I

Here, dSQand dSQdenote integration over Sand r with respect to the coordinates of point
Q. Equation (25) is of an inconvenient form since it requires derivatives of the plastic
moments and it does not include the actual physical components along the boundary. A
better form can be achieved by the following integration by parts:

1f vVVo[M]P dS = 1. f {~:~ oM~+2 a~2~y oM~y+ :;~ c5M~} dS

- f (OM~ :v -Vc5V~) ds+ ±[voM~,). (26)Jr n m-I

y

Fig. 1. Notation for the boundary integrals fonnulation.
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Substituting eqn (26) into eqn (25) results in

t5w(P) = D- ' i {v(t5V~(t5w)-t5V~)-t5wV,,(v)} dSQ

L

+D- I L ([t5wMnr (V)]A
m

- [v(t5M~t(t5w) - t5M~t)]AJ.
m=1
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(27)

Using eqns (5), (6) and (7) the increment of the bending moment 15M" normal to the
boundary is

DM" = DM~-DM~. (28)

Similarly it can be shown that the increment of the effective shear force 15 V" on the boundary
is

15 V" = t5V~-t5V~

and the increment of the twisting moment 15M", is

t5M", = t5M~t-t5M~t.

Therefore eqn (27) can be rewritten as

t5w(P) = D- I i {vt5V,,(t5l1')-t5wV,,(v)} dSQ

+D- I i h~1 (c511')M,,(v) - ~ bM,,(t5l1')} dSQ

L

+D- I L {[t5I1'MII/(v)k, - [vt5Mnr (t5w)kJ.
111=1

(29)

(30)

(31)

Equation (31) gives the value of <511' at any interior point P of S in terms of the physical
quantities 1511', (a/an) (1511'), 15M" and 15 V" on r.

Now let point P tend to Po on r. Taking the limiting values of the integrals, the
following equation for point Po on r is obtained:

O.5t5w(Po) = D- ' i {vt5V,,(t5w)-t5wV,,(v)} dSQ

+D- I i {:n (t5w)M" (v) - :~ t5M,,(t5W)} dsQ

L

+D- I L {[t5wM",(V)]A
m

- [vt5M"t(t5W)]AJ,
m-I

where v = v(Po, Q).

(32)
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A second independent equation is needed since two conditions will always be unknown
on the boundary. According to Stern a second equation, for the normal derivative of \01' at
point Po along the boundary, can be derived as follows (Stern[7]). A local ~'l-coordinate

system is introduced at a point P, as illustrated in Fig. 2. The following fundamental
solution is used:

1
V~ = 2n r In r cos ¢, (33)

where ¢ is the angle of rotation of r with respect to the edirection. It is noted that the
ahove fundamental solution gives the following kernel due to the equivalent shear:

3- v cos ¢
V(v~) = -D2it~. (34)

Due to the fir behavior of this kernel, as Q approaches Po the boundary integral does not
converge in general. Stern suggested substituting w- w(P) into the generalized Rayleigh
Green identity to achieve convergence (Stern[7]). The second boundary integral equation
for a regular point Po along the boundary as given by Stern is herewith modified to
incremental form with the inclusion of the plastic effects:

- :n (bw(Po» = D- 'r{V~bV~(bW)- ~:~ bM~(bW)} dSQ

+D- 'r{:n (bw)Mn(v~)-(bw-bw(Po»Vn(v~)} dSQ

+D-'lfvdbP-VVb[MY} dSQ

L

+ D- I L {[(bw- bw(PO»Mn(V~)]A ... - [v~bM~(bw)k}, (35)
m~1

where eis taken in the normal direction to the boundary at Po. Replacing v with v~ in eqn
(26) and substituting into eqn (35), the following equation is obtained:

L

+D- ' L {[(bw-bw(Po»Mn/(V~)lA... -[v~bMn/(bw)]AJ. (36)
m=1

Q

p

Fig. 2. Notation for ~v·coordinate system.
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Using eqn (32) and eqn (36), the unknowns along the boundary can be expressed in
terms of the known boundary conditions, the given increment of lateral load, and the
increments of the plastic moments. In general the increments of the plastic moments are
unknowns but can be found by an iterative procedure. With respect to the iterative procedure
it should be noted that the increments of the plastic moments are related to the increments
of the plastic strains which are related to the increments of the total strains [eqn (7) and
eqn (I ~)]. To get the increments of the total strains, equations for the second derivatives of
the deflection increment are obtained. In general, the above information is needed for a
point P inside the domain. Equation (31) is hence differentiated twice with respect to XI'

and yP at the internal point P giving the following equations:

0
2

, 11 {iJ2V 0
2

}T2«(jW) = D- -fJ2c5Vn(c5w)-c5wT2(Vn(V» dSQ
uXp r Xp uXp

+D Ii {:n (ow) ::~ (Mn(v»- ::~ (~:)OMn(c5W)}dSQ

_D-
1i f{o ~~ 2 c5M~+2 0 2rv

0 c5M~y} dSQ
s Xp XQ Xp XQ YQ

- D- I1f{fJXr~Yb c5M~ - c5p ;~~} dSQ

also

and

+D- I t {[c5W 0 fJ~ (Mnt(v)] - [0 fJ~ c5Mnt(c5W)] }. (39)
m= I Xp YP Am Xp YP A..
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The behavior of the kernels of the domain integral as P - Q is required in the plastic
moment evaluations using (37) to (39). Using Green's theorem it can be shown that

(40)

(41)

(42)

(43)

(44)

(45),

(46)

(47)

(48)

NUMERICAL SOLUTION

The boundary integrals are discretized into a linear system of algebraic equations. The
boundary is approximated by J straight boundary elements. Along thejth element 15 Vil5w),
I5Mil5w), (a/an) (l5w) and I5w are assumed to be constants and are denoted as ~, Mj , w,nj

and u-j. It is suggested that for analyzing plates with general boundary conditions higher
order interpolation functions should be used (Stern[14]). For the numerical evaluation of
the domain integrals appearing in eqns (32), (36), (37), (38) and (39), the plate field is
approximated by K domain elements (see Fig. 3). For the kth domain element the values
of I5M~, I5M~, I5M~y and ~p are assumed to be constants and have been denoted as ~M~ko

~M~ko bM~yk and bPk. A detailed discussion on the incorporation of the twisting moment
jumps at corners can be found in Stern[7]. For the sake of simplicity only cases with no
corner effects are discussed in the following sections.

Using the above approximations eqn (32) can be written with respect to a point Po = P;
corresponding to the ith element on the boundary as follows:

J

0.5W; = L (at u-j+bijW,Ilj+cijMj+dij~)
j-I

K

+ L (gikbM~k+hikbM~k+qikbMfyk+U;kbpk)
k-I

(i=1,2, ... ,J). (49)

Here, the coefficients are the result of integration over the corresponding elements. This
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x
Fig. 3. Illustration of discretization method.

last set of equations, (49), can be written in matrix form as

[A]{ W} + [B]{ Won} + [C]{M}+ [D]{ V} = [G]{<5M~} + [H]{<5Mn + [Q]{15M~y} +[V] {15p} ,

(50)

where

ajj = a~ -0.5.

Similarly, discretizing eqn (36) results in

J

- W,nt = L (a;l (JJj- WJ+b;jW,nj+c;jMj+d;jV;)
j- I

K

+ L (g~t5M~k+hUet5M~k+qUet5M~yk+UUe t5Pk)
k-I

This last set of equations can be written in matrix form as

(51)

(i = 1,2, ... , J). (52)

[A'] {W} + [B'] {W,n} + [C'] {M} + [D'] {V}

= [G']{t5M~}+[H1{<5Mn+[Q']{t5M~y}+[U1{<5p}, (53)

where

(54)

and

(55)

Combine eqns (50) and (53) and rearrange them according to known and unknown
boundary displacement and load conditions to obtain

(56)

For example, in a clamped plate case the unknown boundary vector is {XS} = {M, VVand
the known one is {yB} = {W, W,nV. The load vector is {,PO} = {t5M~,15M~,<5M~y,t5pV.

Equation (56) is solved as

(57)



1224 A. MOSHAIOV AND W. S. VORUS

Using a similar approach, a vector of unknown increments ofdisplacements and second
partial derivatives inside the domain {WD

} can be found using eqns (31), (37), (38) and
(39) in a discretized form to be

(58)

Substituting eqn (57) in eqn (58) results in

(59)

where

(60)

and

(61)

It should be noted that only {pD} in eqn (59) changes during the incremental procedure.
The rest of the matrices are found in advance. Gaussian quadrature is used for evaluation
of the coefficients. In the case of the domain integrals ofeqns (37), (38) and (39), the limiting
forms, eqns (40), (41), (42), (43) and (44), are applied in way of the singularities.

The solution procedure is:
I. Apply a load increment fJp and calculate the corresponding increments of elastic

strains {fJt:}' at the chosen integration points using eqns (58) and (3).
2. Determine increments of stress {fJa} corresponding to {fJf:}' by eqn (2). Define a

multiplication factor rywhich when multiplied by {fJa} will give the elastic limit. Substitute
ry{ fJa} into eqn (17) and solve for the multiplication factor ryo Repeat for all elements.
Determine the multiplication factor for the onset of yielding by the smallest ryobtained.

3. Update p, w, {t:}' and {a} for the onset of yielding, at all domain elements and
integration points, using the multiplication factor as obtained in step 3.

4. Apply a load increment fJp and assume fJ[MP) = 0 for all domain elements. If
returned from step 11, the final value of fJ[MP] from last increment can be chosen as a first
approximation.

5. Evaluate {fJt:} by eqns (58) and (3) for all integration points using the assumed fJ[MP]
and the load increment.

6. Evaluate the corresponding increments of stress {fJa} by eqn (2).
7. Add {fJa} to {a} and check yielding using eqn (17). When yield is checked along the

plate thickness it is possible to save computational time by starting with integration points
closest to the plate surfaces. Whenever yield does not occur stop checking along the thickness
at that point. If the point has yielded at the start of the increment, calculate {&Yby eqn (18).
If the point yields during the increment at r{fJt:}, use (I-r){fJt:} to evaluate {&}P by eqn
(18) and add r{fJa} to {a}.

8. Using {&}P calculate fJ[M)P by eqn (7).
9. Check convergence. Convergence occurs if changes in fJ[M)P are sufficiently small.

If convergence was not achieved replace assumed fJ[M)P by calculated fJ[M)P and return to
step 5.

10. If convergence has been obtained, update {a}, {w} and p. In a case of hardening,
the yield stress should be updated too.

11. Return to step 4 unless p = Pmax or a predetermined maximum number of iterations
has been reached.

NUMERICAL STUDIES

Based on the above approach, a Fortran program was prepared and executed on an
Apollo DN320 of the Computer Aided Engineering Network (CAEN) of the University
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G"11540
H"300
6"30.0

~ &0 ~

1.lli.!TI: MN;M
THICK.' 0.2

E' 30.000
y" 0.3

Fig. 4. Study A-Problem description.

x

of Michigan. Three typical elasto-plastic plate bending problems were studied to illustrate
the effectiveness of the method. The first problem consists of a clamped square plate with
linear strain hardening subject to uniform lateral load. The second case is an elastic perfectly
plastic simply supported circular plate subject to uniform lateral load. The third case is the
bending of a circular clamped plate of hardening material subject to uniform load.

Following the incremental loading procedure described in the preceding section, the
deflection curves and plastic zones were found. Due to the asymptotic behavior of the
deflection the number of iterations needed for each load increment increases as plasticity
develops and therefore the process is generally stopped at some practical load below the
limit load. The numerical studies are explained below.

Study A : A clamped square plate oflinear hardening material subject to uniform lateral load
A clamped square plate is subject to an increasing uniform load as described in Fig.

4. A linear strain hardening material is assumed. The boundary of the square plate is divided
into 4 x 10 straight boundary elements of equal lengths. The domain of the plate area is
divided into 12 x 12 square elements of equal size. Each domain element has 10 integration
points along the thickness for calculating the plastic moments.

The results of the calculations are shown in Figs 5 and 6. In Fig. 5 the deflection of

p

0.50

0.25

........ - OWEN&FIGUEIRAS 83

--- - PRESENT SOLUTION

2.0 4.0

SAS 22:11-£

!.lli!TS: MN;M

Fig. 5. Study A-eentral deflection vs load.
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P =0. 35
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Fig. 6. Study A-Elastic plastic boundaries.
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Fig. 7. Study B-Problem description.
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Fig. 8. Study B-Distributions of deflections.
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the plate center is given vs the load. The nonlinear behavior, following the linear elastic
deflection, is readily observed. The good agreement with finite element results published by
Owen and Figueiras[12] is obvious from Fig. 5. Figure 6 indicates the predicted spread of
plasticity through the plate volume at a given load close to the limit load. The numbers
appearing inside the domain elements indicate the level of plasticity through the thickness,
and correspond to the number of integration points at which yielding was reached. Elements
that are left blank indicate elastic zones.

Study B: Elastic perfectly plastic simply supported circular plate subject to uniform lateral
load

The bending of a simply supported circular plate subject to a uniform lateral load is
studied here (see Fig. 7). The plate material is taken to be elastic perfectly plastic. This
example ofa simply supported circular plate was studied by Popov et al.[1 0] using a stiffness
matrix of ring elements and taking advantage of the problem symmetry. Presently, the use
ofsymmetry is not implemented in the program developed. The plate area was approximated
by 144 square and trapezoidal domain elements. It was found that the approximation
associated with these element shapes had no strong effects on the results. The boundary of
the plate was divided into 48 straight boundary elements of equal length. The results are
shown in Figs 8 and 9. In Fig. 8 the distributions of the deflections for three load levels
are given. The plasticity starts at the plate center and spreads toward the circular boundary
as shown in Fig. 9. The elastic plastic boundary lines in Fig. 9. are due to Popov et al.[IO]
and are compared to the approximated stepped boundaries that were obtained here. Good
agreement with the results obtained by Popov et al. is indicated. The small difference in the
results shown in Fig. 8 is increasing with the load, and is believed to be mainly due to the
flat asymptotic behavior of the deflections as plasticity spreads.

Study C: Clamped circular plate ofhardening material subject to uniform load
This example of a clamped circular plate of hardening material was investigated by

Popov et al.[1I] and is illustrated in Fig. 10. For simplicity, linear hardening is taken; this
approximates the material given in the above reference (see Fig. II). The boundary and
domain elements are taken the same as in Study B described above. The results are
summarized in Figs 12 and 13. In Fig. 12 the distributions of the deflections for several

l:o<l(SEE FIG,HI
P=0.33

\. 2R= 20.0",. .\

2a$.~
Fig. 10. Study C-Problem description.
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Fig. 11. Study C-Uniaxial stress-strain curve.

load levels are given. The elastic plastic boundary lines in Fig. 13 are due to Popov et a/.[ll]
and are compared to the approximated stepped boundaries that were obtained here. The
plasticity starts at the boundary and at the plate center and spreads from the plate surfaces
toward the midplane as shown in Fig. 13. A good agreement is shown with the results
obtained by Popov et a/.[ll] in spite of the linear hardening approximation used here.

SUMMARY AND CONCLUSIONS

In this work the effectiveness of boundary integrals to solve elasto-plastic plate bending
problems using an incremental iterative procedure based on initial plastic moments is
studied. The generalized Rayleigh-Green identity is used with the advantage of having the
boundary integrals in terms of the actual physical components of deflection, slope, moment
and equivalent shear along the boundary. This fact allows different admissible boundary
conditions to be imposed. It is shown that the introduction of plastic moments does not
change the above property.

Boundary integrals for the second partial derivatives of the deflection are formulated
and used for direct calculation of the strain components needed for the evaluation of the
initial plastic moments in the iterative procedure. This semianalytical method for the
evaluation of the derivatives is believed to give high accuracy in comparison to the methods
used for stress evaluation in finite element analysis. Some difficulties which are encountered
in plate bending analysis by the finite element method are avoided by the suggested method
(Zienkiewicz[15]). Other benefits of the method are the small number of unknowns and the
invariance of the inverted matrix with progressive incrementation.

6-.... POPOV ET AL. 67b
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Fig. 12. Study C-Distributions of deflections.
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It is demonstrated through the use of several examples that the iterative method for
finding the increments of the plastic moments converges. Good agreement with results
obtained by the finite clement method is shown.

Finally it is concluded that the method developed in this paper is capable of solving a
variety of elasto-plastic plate bending problems. It can be easily used with different
incremental constitutive relations and different plate shapes and boundary conditions.
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